Analysis of Rayleigh-Brillouin spectral profiles and Brillouin shifts in nitrogen gas and air.

نویسندگان

  • Yong Ma
  • Hao Li
  • ZiYu Gu
  • Wim Ubachs
  • Yin Yu
  • Jun Huang
  • Bo Zhou
  • Yuanqing Wang
  • Kun Liang
چکیده

On the basis of experimental Rayleigh-Brillouin scattering data in gaseous nitrogen and air, simulations are performed to describe the observed frequency profiles in analytical form. The experimental data pertain to a λ = 366 nm scattering wavelength, a 90° scattering angle, pressures of 1 and 3 bar, and temperatures in the range 250 - 340 K. Two different models are used to represent the RB-profiles, to distinguish the RB-peaks, and to obtain the Brillouin shift associated with the acoustic waves generated in a gaseous medium. Calculations in the framework of V3 and G3 models, exhibiting composite profiles of three distinct peaks of Voigt or Gaussian functions, are compared to observation. Fitting results show that the V3 model yields an improvement over the G3 model. This mathematical model provides an even better representation of the observed profiles than the Tenti S6 model, which is considered to be the optimum representation in terms of physical parameters. For the derivation of Brillouin shifts, both models perform well at high gas pressure, while at lower pressures, the V3 model yields a higher accuracy than the G3 model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rayleigh-Brillouin scattering to determine one-dimensional temperature and number density profiles of a gas flow field.

Rayleigh-Brillouin spectra for heated nitrogen gas were measured by imaging the output of a Fabry-Perot interferometer onto a CCD array. The spectra were compared with the theoretical 6-moment model of Rayleigh-Brillouin scattering convolved with the Fabry-Perot instrument function. Estimates of the temperature and a dimensionless parameter proportional to the number density of the gas as funct...

متن کامل

A systematic study of Rayleigh-Brillouin scattering in air, N₂, and O₂ gases.

Spontaneous Rayleigh-Brillouin scattering experiments in air, N2, and O2 have been performed for a wide range of temperatures and pressures at a wavelength of 403 nm and at a 90° scattering angle. Measurements of the Rayleigh-Brillouin spectral scattering profile were conducted at high signal-to-noise ratio for all three species, yielding high-quality spectra unambiguously showing the small dif...

متن کامل

Temperature Dependence of the Rayleigh Brillouin Spectrum Linewidth in Air and Nitrogen

The relation between spontaneous Rayleigh Brillouin (SRB) spectrum linewidth, gas temperature, and pressure are analyzed at the temperature range from 220 to 340 K and the pressure range from 0.1 to 1 bar, covering the stratosphere and troposphere relevant for the Earth's atmosphere and for atmospheric Lidar missions. Based on the analysis, a model retrieving gas temperature from directly measu...

متن کامل

Temperature-dependent bulk viscosity of nitrogen gas determined from spontaneous Rayleigh-Brillouin scattering.

Values for the bulk viscosity η(b) of molecular nitrogen gas (N2) were derived from spontaneous Rayleigh-Brillouin scattering at ultraviolet wavelengths (λ=366.8 nm) and at a 90° scattering angle. Analysis of the scattering profiles yields values showing a linear increasing trend, ranging from η(b)=0.7×10(-5) to 2.0×10(-5) kg·m(-1)·s(-1) in the temperature interval from 255 to 340 K. The presen...

متن کامل

Analytical model for Rayleigh-Brillouin line shapes in air.

Atmospheric lidar techniques for the measurement of wind, temperature, and optical properties of aerosols as well as nonintrusive measurement techniques for temperature, density, and bulk velocity in gas flows rely on the exact knowledge of the spectral line shape of the scattered laser light on molecules. A mathematically complex, numerical model (Tenti S6 model) is currently the best model fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 22 2  شماره 

صفحات  -

تاریخ انتشار 2014